Product Description
Durable Hex Zirconia Ceramic Screw and Bolts
The main features of the zirconia ceramic screw and bolts
1.High density: over 6 g/cm3, which makes it the densest body of the ceramic products
2.High hardness: over 9 on Mohs scale, CZPT being 10, with a satin-smooth surface finish
3.High toughness: over 1200 MPa, approx. 4 times in comparison with 95% alumina
4. Excellent wear resistance, it’s much better than aluminum oxide ceramics with a longer life cycle
5. Low thermal conductivity: less than 3 W/m.k at ambient temperature, so it’s an ideal thermal material
6. Good chemical and corrosion resistance, it’s equivalent to above 99% alumina
The specification of the ceramic screw and bolts
Material option | Zirconia (ZrO2), Alumina(Al2O3) |
Forming methods | Dry pressed, Ceramic injection molding, Hot pressed, ISO pressed |
Specification | OD can be from 1 to 50mm, length can be from 10mm to 800mm |
Precision processing | CNC machining, Precision grinding, Polishing, Lapping, |
Tolerance | The tolerance of OD and ID can be 0.001mm, the tolerance of length can be 0.001mm |
Key parameters | Roughness to be 0.02mm, Parallelism to be 0.001mm |
Surface quality | Free of cracks, foreign contamination, mirror surface better than Ra0.1 |
The description of zirconia ceramic parts
Zirconia ceramic parts are made of zirconium oxide ceramics which is a kind of strongest technical ceramic material with exceptional strength, high toughness, and superb reliability. These outstanding characteristics result in excellent resistance to wear and corrosion.
We have been offering a selection of partially stabilized zirconia, including Y-TZP( yttria-stabilized), MSZ ( magnesia stabilized ), CSZ- (ceria stabilized). Each stabilized zirconia provides unique and specific properties that meet the demands of extreme applications found in many industries.
With our production capability through CNC, precision grinding machines, we are CZPT to provide many different levels of precision zirconia ceramic parts to meet customers’ high precision assembly needs.
The gallery of zirconia ceramic parts
Datasheet of Technical ceramics
Property | Units | Material |
||||
99.5% alumina |
99% alumina |
95% alumina |
ZrO2 (Y-TZP) |
ZrO2 |
||
Density | g/cm3 | ≥3.85 | ≥3.80 | ≥3.60 | ≥5.95 | ≥5.72 |
Water absorption | % | 0 | 0 | 0 | 0 | 0 |
Hardness | HV | 1700 | 1700 | 1500 | 1300 | 900 |
Flexural strength | Mpa | ≥379 | ≥338 | ≥320 | ≥1200 | ≥1200 |
Compressive strength | Mpa | ≥2240 | ≥2240 | ≥2000 | ≥1990 | 1750 |
Fracture toughness | Mpa m1/2 | 4-5 | 4-5 | 3-4 | 6.5-8 | 11 |
Max. service temperature |
ºC | 1675 | 1600 | 1450 | 1000 | |
CTE | 1×10 -6 /ºC | 6.5~8.0 | 6.2~8.0 | 5.0~8.0 | 8.0~9.5 | 10.2 |
Thermal shock | T(ºC) | ≥250 | ≥200 | ≥220 | ≥300 | 350 |
Thermal conductivity(25ºC) | W/m.k | 30 | 29 | 24 | 3 | 3 |
Volume resistivity | ohm.cm | |||||
25ºC | >1 x 10 14 | >1 x 10 14 | >1 x 10 14 | >1 x 10 11 | >1 x 10 11 | |
300ºC | 1 x 10 12 | 8 x 10 11 | 10 12 -10 13 | 1 x 10 10 | 1 x 10 10 | |
500ºC | 5 x 10 10 | 2 x 10 9 | 1 x 10 9 | 1 x 10 6 | 1 x 10 6 | |
Insulation strength | KV/mm | 19 | 18 | 18 | 17 | 20 |
Dielectric constant(1Mhz) | (E) | 9.7 | 9.5 | 9.5 | 29 | 28 |
Our capability and strength
We have in-housing comprehensive manufacturing types of equipment, including forming, sintering,
CNC machining, precision grinding, laser cutting, and so on, it helps us to control the quality very well.
Also, it greatly benefits cost control.
The state of the art manufacturing equipment
Rigorous Quality-control System
Remark:
We have the complete quality-control system per ISO9001, including IQC, IPQC, QA, and OQC process.
Typical Packaging Proposal and Transportation Methods
1. Packaging proposal
2. Regular Transporation Methods
FAQs (Frequently Asked Questions)
Q1. Are you a factory or trading company?
A: We are a manufacturer of over 15 years of experience. You are welcome to visit our factory.
Q2: Do you send a sample to check?
A: Sure, the sample is free and freight collect.
Q3: When will you ship it?
A: If the products are in storage, we’ll ship within 48 hours
Q4: When can I get the price?
A: We regularly quote within 24 hours after we get your inquiry. If you are in urgent need of getting the price.
Please call us or tell us in your email so that we will proceed with your inquiry as a priority.
Q5: Is it available to provide customized products?
A: We always support custom-made demand as per different materials, dimensions, and designs.
Application: | Refractory, Structure Ceramic, Industrial Ceramic, Engineering Ceramic |
---|---|
Material: | Zirconia Ceramic |
Type: | Ceramic Parts |
Product Name: | Zirconia Ceramic Screw Insulator |
Shaping Methods: | Dry Pressed, ISO Pressed, Hot Pressed |
Density: | Over 5.95g/cm3 |
Samples: |
US$ 10/Piece
1 Piece(Min.Order) | |
---|
Customization: |
Available
| Customized Request |
---|
What Are Screw Shaft Threads?
A screw shaft is a threaded part used to fasten other components. The threads on a screw shaft are often described by their Coefficient of Friction, which describes how much friction is present between the mating surfaces. This article discusses these characteristics as well as the Material and Helix angle. You’ll have a better understanding of your screw shaft’s threads after reading this article. Here are some examples. Once you understand these details, you’ll be able to select the best screw nut for your needs.
Coefficient of friction between the mating surfaces of a nut and a screw shaft
There are two types of friction coefficients. Dynamic friction and static friction. The latter refers to the amount of friction a nut has to resist an opposing motion. In addition to the material strength, a higher coefficient of friction can cause stick-slip. This can lead to intermittent running behavior and loud squeaking. Stick-slip may lead to a malfunctioning plain bearing. Rough shafts can be used to improve this condition.
The two types of friction coefficients are related to the applied force. When applying force, the applied force must equal the nut’s pitch diameter. When the screw shaft is tightened, the force may be removed. In the case of a loosening clamp, the applied force is smaller than the bolt’s pitch diameter. Therefore, the higher the property class of the bolt, the lower the coefficient of friction.
In most cases, the screwface coefficient of friction is lower than the nut face. This is because of zinc plating on the joint surface. Moreover, power screws are commonly used in the aerospace industry. Whether or not they are power screws, they are typically made of carbon steel, alloy steel, or stainless steel. They are often used in conjunction with bronze or plastic nuts, which are preferred in higher-duty applications. These screws often require no holding brakes and are extremely easy to use in many applications.
The coefficient of friction between the mating surfaces of t-screws is highly dependent on the material of the screw and the nut. For example, screws with internal lubricated plastic nuts use bearing-grade bronze nuts. These nuts are usually used on carbon steel screws, but can be used with stainless steel screws. In addition to this, they are easy to clean.
Helix angle
In most applications, the helix angle of a screw shaft is an important factor for torque calculation. There are two types of helix angle: right and left hand. The right hand screw is usually smaller than the left hand one. The left hand screw is larger than the right hand screw. However, there are some exceptions to the rule. A left hand screw may have a greater helix angle than a right hand screw.
A screw’s helix angle is the angle formed by the helix and the axial line. Although the helix angle is not usually changed, it can have a significant effect on the processing of the screw and the amount of material conveyed. These changes are more common in two stage and special mixing screws, and metering screws. These measurements are crucial for determining the helix angle. In most cases, the lead angle is the correct angle when the screw shaft has the right helix angle.
High helix screws have large leads, sometimes up to six times the screw diameter. These screws reduce the screw diameter, mass, and inertia, allowing for higher speed and precision. High helix screws are also low-rotation, so they minimize vibrations and audible noises. But the right helix angle is important in any application. You must carefully choose the right type of screw for the job at hand.
If you choose a screw gear that has a helix angle other than parallel, you should select a thrust bearing with a correspondingly large center distance. In the case of a screw gear, a 45-degree helix angle is most common. A helix angle greater than zero degrees is also acceptable. Mixing up helix angles is beneficial because it allows for a variety of center distances and unique applications.
Thread angle
The thread angle of a screw shaft is measured from the base of the head of the screw to the top of the screw’s thread. In America, the standard screw thread angle is 60 degrees. The standard thread angle was not widely adopted until the early twentieth century. A committee was established by the Franklin Institute in 1864 to study screw threads. The committee recommended the Sellers thread, which was modified into the United States Standard Thread. The standardized thread was adopted by the United States Navy in 1868 and was recommended for construction by the Master Car Builders’ Association in 1871.
Generally speaking, the major diameter of a screw’s threads is the outside diameter. The major diameter of a nut is not directly measured, but can be determined with go/no-go gauges. It is necessary to understand the major and minor diameters in relation to each other in order to determine a screw’s thread angle. Once this is known, the next step is to determine how much of a pitch is necessary to ensure a screw’s proper function.
Helix angle and thread angle are two different types of angles that affect screw efficiency. For a lead screw, the helix angle is the angle between the helix of the thread and the line perpendicular to the axis of rotation. A lead screw has a greater helix angle than a helical one, but has higher frictional losses. A high-quality lead screw requires a higher torque to rotate. Thread angle and lead angle are complementary angles, but each screw has its own specific advantages.
Screw pitch and TPI have little to do with tolerances, craftsmanship, quality, or cost, but rather the size of a screw’s thread relative to its diameter. Compared to a standard screw, the fine and coarse threads are easier to tighten. The coarser thread is deeper, which results in lower torques. If a screw fails because of torsional shear, it is likely to be a result of a small minor diameter.
Material
Screws have a variety of different sizes, shapes, and materials. They are typically machined on CNC machines and lathes. Each type is used for different purposes. The size and material of a screw shaft are influenced by how it will be used. The following sections give an overview of the main types of screw shafts. Each one is designed to perform a specific function. If you have questions about a specific type, contact your local machine shop.
Lead screws are cheaper than ball screws and are used in light-duty, intermittent applications. Lead screws, however, have poor efficiency and are not recommended for continuous power transmission. But, they are effective in vertical applications and are more compact. Lead screws are typically used as a kinematic pair with a ball screw. Some types of lead screws also have self-locking properties. Because they have a low coefficient of friction, they have a compact design and very few parts.
Screws are made of a variety of metals and alloys. Steel is an economical and durable material, but there are also alloy steel and stainless steel types. Bronze nuts are the most common and are often used in higher-duty applications. Plastic nuts provide low-friction, which helps reduce the drive torques. Stainless steel screws are also used in high-performance applications, and may be made of titanium. The materials used to create screw shafts vary, but they all have their specific functions.
Screws are used in a wide range of applications, from industrial and consumer products to transportation equipment. They are used in many different industries, and the materials they’re made of can determine their life. The life of a screw depends on the load that it bears, the design of its internal structure, lubrication, and machining processes. When choosing screw assemblies, look for a screw made from the highest quality steels possible. Usually, the materials are very clean, so they’re a great choice for a screw. However, the presence of imperfections may cause a normal fatigue failure.
Self-locking features
Screws are known to be self-locking by nature. The mechanism for this feature is based on several factors, such as the pitch angle of the threads, material pairing, lubrication, and heating. This feature is only possible if the shaft is subjected to conditions that are not likely to cause the threads to loosen on their own. The self-locking ability of a screw depends on several factors, including the pitch angle of the thread flank and the coefficient of sliding friction between the two materials.
One of the most common uses of screws is in a screw top container lid, corkscrew, threaded pipe joint, vise, C-clamp, and screw jack. Other applications of screw shafts include transferring power, but these are often intermittent and low-power operations. Screws are also used to move material in Archimedes’ screw, auger earth drill, screw conveyor, and micrometer.
A common self-locking feature for a screw is the presence of a lead screw. A screw with a low PV value is safe to operate, but a screw with high PV will need a lower rotation speed. Another example is a self-locking screw that does not require lubrication. The PV value is also dependent on the material of the screw’s construction, as well as its lubrication conditions. Finally, a screw’s end fixity – the way the screw is supported – affects the performance and efficiency of a screw.
Lead screws are less expensive and easier to manufacture. They are a good choice for light-weight and intermittent applications. These screws also have self-locking capabilities. They can be self-tightened and require less torque for driving than other types. The advantage of lead screws is their small size and minimal number of parts. They are highly efficient in vertical and intermittent applications. They are not as accurate as lead screws and often have backlash, which is caused by insufficient threads.
editor by CX 2023-11-24
China Galvanized Steel Fully Threaded Rod Bar Studs Tone Bolts Fastener screw conveyor shaft alignment
Warranty: 3 years
Finish: black, ZINC
Material: Steel
Measurement system: Metric
Application: General Industry, Heavy Industry, Mining
Thread inserts type: Thrread rods M14-M36
Customized support: OEM, ODM, OBM
Product name: Threaded Rod
Main Material: 4.8 6.8 8.8 10.9 12.9
Surface Treatment: Zinc-plating, Black , Geomet, Dacromet, Black Oxide
Size: M6-M200,3/8-8
Length: 25-6000mm,1-200
Sample: Free charge
Standard: ISO, DIN, ANSI, JIS, BS and Non-standard
Packing Detail: Mostly 25KG/Carton, Wholesale 1 piece single split stainless steel clamping shaft collar 36carton/pallet.Standard export wooden pallets.
Payment Term: TT 30% Deposit
Package: Customer’require
Packaging Details: 25KG/Carton,36cartons/pallet.Standard export wooden pallets.
Port: ZheJiang or ZheJiang , China
Product Name | Threaded Rods |
Color | Black / Blue / Yellow Zinc Plated / Plain |
Standard | DIN,ASME,ASNI,ISO |
Grade | Grade 4.8,Grade 8.8,Grade 10.9,Grade 12.9 |
Finished | Zinc Plated,Hot Dip Galvanized Steel,Dacromet,Nickel Plated,Black Oxide,Plain |
Mark | According to customer’s requirement |
Delivery time: | Normally in15-30 days. |
Package | Cartons&pallets or according to customer’ Cheap 180mm 1 61926 62220 62317 63317 CZPT ceramic ball bearings s requirement. |
With a wide range, good quality, reasonable prices and stylish designs, our products are extensively used in Mold, Electricity, Construction, Solar energy, Automotive, Machinery & Equipment and other industries. Our company has purchased steel from several large steel groups , such as HangZhou Steel Mill, ZheJiang Bashan Steel Mill, Linear Motion Xihu (West Lake) Dis. Slide Block Bearing With Rail HGW30CA ZheJiang Shrugging Steel Mill whose steel have good mechanical properties and stability of chemical component. it keep the bolt to be of high strength.
Exhibition Quality Control Expo around the world Certifications FAQ 1. Q: Could you send me your catalogue and price list?
A: As we have more than thousands of products, it is really too hard to send all of catalogue and price list for you. Please inform us the style you interested, we can offer the pricelist for your reference.
2. Q: How about the quality of your product?
A: 100% inspection during production. Our products are certified to ISO9001, TS16949 international quality standards.
3. Q: What material of the product can you supply?
A: Carbon Steel, Alloy Steel, Stainless Steel, Brass, Copper or according to your requirement.
4. Q: What’s your packing?
A: Our Normal packing is bulking in Cartons, 25kgs/carton, 36cartons/ pallet. We also can pack products according to your requirement.
5. Q: What about the warranty?
A: We are very confident in our products, and we pack them very well to make sure the goods in well protection.
To avoid any subsequent trouble regarding quality issue, we suggest you check the goods once you receive them. If there is any transport damaged or quality issue, don’t forget take the detail pictures and contact us as soon as possible, we will properly handle it to make sure your loss to reduce to the smallest.
Screw Shaft Types and Uses
Various uses for the screw shaft are numerous. Its major diameter is the most significant characteristic, while other aspects include material and function are important. Let us explore these topics in more detail. There are many different types of screw shafts, which include bronze, brass, titanium, and stainless steel. Read on to learn about the most common types. Listed below are some of the most common uses for a screw shaft. These include: C-clamps, screw jacks, vises, and more.
Major diameter of a screw shaft
A screw’s major diameter is measured in fractions of an inch. This measurement is commonly found on the screw label. A screw with a major diameter less than 1/4″ is labeled #0 to #14; those with a larger diameter are labeled fractions of an inch in a corresponding decimal scale. The length of a screw, also known as the shaft, is another measure used for the screw.
The major diameter of a screw shaft is the greater of its two outer diameters. When determining the major diameter of a screw, use a caliper, micrometer, or steel rule to make an accurate measurement. Generally, the first number in the thread designation refers to the major diameter. Therefore, if a screw has a thread of 1/2-10 Acme, the major diameter of the thread is.500 inches. The major diameter of the screw shaft will be smaller or larger than the original diameter, so it’s a good idea to measure the section of the screw that’s least used.
Another important measurement is the pitch. This measures the distance between one thread’s tip and the next thread’s corresponding point. Pitch is an important measurement because it refers to the distance a screw will advance in one turn. While lead and pitch are two separate concepts, they are often used interchangeably. As such, it’s important to know how to use them properly. This will make it easier to understand how to select the correct screw.
There are three different types of threads. The UTS and ISO metric threads are similar, but their common values for Dmaj and Pmaj are different. A screw’s major diameter is the largest diameter, while the minor diameter is the lowest. A nut’s major diameter, or the minor diameter, is also called the nut’s inside diameter. A bolt’s major diameter and minor diameter are measured with go/no-go gauges or by using an optical comparator.
The British Association and American Society of Mechanical Engineers standardized screw threads in the 1840s. A standard named “British Standard Whitworth” became a common standard for screw threads in the United States through the 1860s. In 1864, William Sellers proposed a new standard that simplified the Whitworth thread and had a 55 degree angle at the tip. Both standards were widely accepted. The major diameter of a screw shaft can vary from one manufacturer to another, so it’s important to know what size screw you’re looking for.
In addition to the thread angle, a screw’s major diameter determines the features it has and how it should be used. A screw’s point, or “thread”, is usually spiky and used to drill into an object. A flat tipped screw, on the other hand, is flat and requires a pre-drilled hole for installation. Finally, the diameter of a screw bolt is determined by the major and minor diameters.
Material of a screw shaft
A screw shaft is a piece of machine equipment used to move raw materials. The screw shaft typically comprises a raw material w. For a particular screw to function correctly, the raw material must be sized properly. In general, screw shafts should have an axial-direction length L equal to the moving amount k per 1/2 rotation of the screw. The screw shaft must also have a proper contact angle ph1 in order to prevent raw material from penetrating the screw shaft.
The material used for the shaft depends on its application. A screw with a ball bearing will work better with a steel shaft than one made of aluminum. Aluminum screw shafts are the most commonly used for this application. Other materials include titanium. Some manufacturers also prefer stainless steel. However, if you want a screw with a more modern appearance, a titanium shaft is the way to go. In addition to that, screws with a chromium finish have better wear resistance.
The material of a screw shaft is important for a variety of applications. It needs to have high precision threads and ridges to perform its function. Manufacturers often use high-precision CNC machines and lathes to create screw shafts. Different screw shafts can have varying sizes and shapes, and each one will have different applications. Listed below are the different materials used for screw shafts. If you’re looking for a high-quality screw shaft, you should shop around.
A lead screw has an inverse relationship between contact surface pressure and sliding velocity. For heavier axial loads, a reduced rotation speed is needed. This curve will vary depending on the material used for the screw shaft and its lubrication conditions. Another important factor is end fixity. The material of a screw shaft can be either fixed or free, so make sure to consider this factor when choosing the material of your screw. The latter can also influence the critical speed and rigidity of the screw.
A screw shaft’s major diameter is the distance between the outer edge of the thread and the inner smooth part. Screw shafts are typically between two and sixteen millimeters in diameter. They feature a cylindrical shape, a pointy tip, and a wider head and drive than the former. There are two basic types of screw heads: threaded and non-threaded. These have different properties and purposes.
Lead screws are a cost-effective alternative to ball screws, and are used for low power and light to medium-duty applications. They offer some advantages, but are not recommended for continuous power transmission. But lead screws are often quieter and smaller, which make them useful for many applications. Besides, they are often used in a kinematic pair with a nut object. They are also used to position objects.
Function of a screw shaft
When choosing a screw for a linear motion system, there are many factors that should be considered, such as the position of the actuator and the screw and nut selection. Other considerations include the overall length of travel, the fastest move profile, the duty cycle, and the repeatability of the system. As a result, screw technology plays a critical role in the overall performance of a system. Here are the key factors to consider when choosing a screw.
Screws are designed with an external threading that digs out material from a surface or object. Not all screw shafts have complete threading, however. These are known as partially threaded screws. Fully threaded screws feature complete external threading on the shaft and a pointed tip. In addition to their use as fasteners, they can be used to secure and tighten many different types of objects and appliances.
Another factor to consider is axial force. The higher the force, the bigger the screw needs to be. Moreover, screws are similar to columns that are subject to both tension and compression loads. During the compression load, bowing or deflection is not desirable, so the integrity of the screw is important. So, consider the design considerations of your screw shaft and choose accordingly. You can also increase the torque by using different shaft sizes.
Shaft collars are also an important consideration. These are used to secure and position components on the shaft. They also act as stroke limiters and to retain sprocket hubs, bearings, and shaft protectors. They are available in several different styles. In addition to single and double split shaft collars, they can be threaded or set screw. To ensure that a screw collar will fit tightly to the shaft, the cap must not be overtightened.
Screws can be cylindrical or conical and vary in length and diameter. They feature a thread that mates with a complementary helix in the material being screwed into. A self-tapping screw will create a complementary helix during driving, creating a complementary helix that allows the screw to work with the material. A screw head is also an essential part of a screw, providing gripping power and compression to the screw.
A screw’s pitch and lead are also important parameters to consider. The pitch of the screw is the distance between the crests of the threads, which increases mechanical advantage. If the pitch is too small, vibrations will occur. If the pitch is too small, the screw may cause excessive wear and tear on the machine and void its intended purpose. The screw will be useless if it can’t be adjusted. And if it can’t fit a shaft with the required diameter, then it isn’t a good choice.
Despite being the most common type, there are various types of screws that differ in their functions. For example, a machine screw has a round head, while a truss head has a lower-profile dome. An oval-its point screw is a good choice for situations where the screw needs to be adjusted frequently. Another type is a soft nylon tip, which looks like a Half-dog point. It is used to grip textured or curved surfaces.
editor by czh 2023-07-03